Wartungsarbeiten: Am 16.01.2025 von ca. 8:00 bis 11:00 Uhr steht Ihnen das System nicht zur Verfügung. Bitte stellen Sie sich entsprechend darauf ein.
 

On the maximum likelihood estimator for the generalized extreme-value distribution

Loading...
Thumbnail Image

Date

2016

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

The vanilla method in univariate extreme-value theory consists of fitting the three-parameter Generalized Extreme-Value (GEV) distribution to a sample of block maxima. Despite claims to the contrary, the asymptotic normality of the maximum likelihood estimator has never been established. In this paper, a formal proof is given using a general result on the maximum likelihood estimator for parametric families that are differentiable in quadratic mean but whose support depends on the parameter. An interesting side result concerns the (lack of) differentiability in quadratic mean of the GEV family.

Description

Table of contents

Keywords

differentiability in quadratic mean, support, Lipschitz condition, generalized extreme-value distribution, Fisher information, empirical process, maximum likelihood, M-estimator

Citation