On the maximum likelihood estimator for the generalized extreme-value distribution

dc.contributor.authorBücher, Axel
dc.contributor.authorSegers, Johan
dc.date.accessioned2016-01-26T11:34:23Z
dc.date.available2016-01-26T11:34:23Z
dc.date.issued2016
dc.description.abstractThe vanilla method in univariate extreme-value theory consists of fitting the three-parameter Generalized Extreme-Value (GEV) distribution to a sample of block maxima. Despite claims to the contrary, the asymptotic normality of the maximum likelihood estimator has never been established. In this paper, a formal proof is given using a general result on the maximum likelihood estimator for parametric families that are differentiable in quadratic mean but whose support depends on the parameter. An interesting side result concerns the (lack of) differentiability in quadratic mean of the GEV family.en
dc.identifier.urihttp://hdl.handle.net/2003/34470
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-16526
dc.language.isoende
dc.relation.ispartofseriesDiscussion Paper / SFB 823;3/2016en
dc.subjectdifferentiability in quadratic meanen
dc.subjectsupporten
dc.subjectLipschitz conditionen
dc.subjectgeneralized extreme-value distributionen
dc.subjectFisher informationen
dc.subjectempirical processen
dc.subjectmaximum likelihooden
dc.subjectM-estimatoren
dc.subject.ddc310
dc.subject.ddc330
dc.subject.ddc620
dc.titleOn the maximum likelihood estimator for the generalized extreme-value distributionen
dc.typeTextde
dc.type.publicationtypeworkingPaperde
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DP_0316_SFB823_Bücher_Segers.pdf
Size:
431.97 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.12 KB
Format:
Item-specific license agreed upon to submission
Description: