Numerical Analysis of a Time-Simultaneous Multigrid Solver for Stabilized Convection-Dominated Transport Problems in 1D
Loading...
Date
2023-08
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The work to be presented focuses on the convection-diffusion equation, especially in the regime
of small diffusion coefficients, which is solved using a time-simultaneous multigrid algorithm closely
related to multigrid waveform relaxation. For spatial discretization we use linear finite elements, while
the time integrator is given by e.g. the Crank-Nicolson scheme. Blocking all time steps into a global
linear system of equations and rearranging the degrees of freedom leads to a space-only problem with
vector-valued unknowns for each spatial node. Then, common iterative solution techniques, such as
the GMRES method with block Jacobi preconditioning, can be used for the numerical solution of the
(spatial) problem and allow a higher degree of parallelization in space. We consider a time-simultaneous
multigrid algorithm, which exploits space-only coarsening and the solution techniques mentioned above
for smoothing purposes. By treating more time steps simultaneously, the dimension of the system of
equations increases significantly and, hence, results in a larger number of degrees of freedom per spatial
unknown. This can be used to employ parallel processes more efficiently. In numerical studies, the
iterative multigrid solution of a problem with up to thousands of blocked time steps is analyzed in 1D.
For the special case of the heat equation, it is well known that the number of iterations is bounded
above independently of the number of blocked time steps, the time step size, and the spatial resolution.
Unfortunately, convergence issues arise for the multigrid solver in convection-dominated regimes. In the
context of the standard Galerkin method if the diffusion coefficient is small compared to the grid size
and the magnitude of the velocity field, stabilization techniques are typically used to remove artificial
oscillations in the solution. However, in our setting, special higher-order variational multiscale-type
stabilization methods are discussed, which simultaneously improve the convergence behavior of the
iterative solver as well as the smoothness of the numerical solution without significantly perturbing the
accuracy.
Description
Table of contents
Keywords
convection-diffusion equations, variational multiscale methods, multigrid waveform relaxation