Convergence of adaptive finite element methods with error-dominated oscillation

dc.contributor.authorKreuzer, Christian
dc.contributor.authorVeeser, Andreas
dc.date.accessioned2018-04-23T12:26:24Z
dc.date.available2018-04-23T12:26:24Z
dc.date.issued2018-03
dc.description.abstractRecently, we devised an approach to a posteriori error analysis, which clarifies the role of oscillation and where oscillation is bounded in terms of the current approximation error. Basing upon this approach, we derive plain convergence of adaptive linear finite elements approximating the Poisson problem. The result covers arbritray H^-1-data and characterizes convergent marking strategies.en
dc.identifier.issn2190-1767
dc.identifier.urihttp://hdl.handle.net/2003/36843
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-18844
dc.language.isoen
dc.relation.ispartofseriesErgebnisberichte des Instituts für Angewandte Mathematik;583
dc.subject.ddc610
dc.subject.rswkFinite-Elemente-Methodede
dc.subject.rswkAdaptives Verfahrende
dc.titleConvergence of adaptive finite element methods with error-dominated oscillationen
dc.typeText
dc.type.publicationtypepreprint
dcterms.accessRightsopen access
eldorado.secondarypublicationfalse

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ergebnisbericht Nr. 583.pdf
Size:
301.08 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.85 KB
Format:
Item-specific license agreed upon to submission
Description: