Convergence Analysis of a Local Stationarity Scheme for Rate-Independent Systems and Application to Damage
dc.contributor.author | Sievers, Michael | |
dc.date.accessioned | 2021-05-21T15:24:05Z | |
dc.date.available | 2021-05-21T15:24:05Z | |
dc.date.issued | 2021-04 | |
dc.description.abstract | This paper is concerned with an approximation scheme for rate-independent systems governed by a non-smooth dissipation and a possibly non-convex energy functional. The scheme is based on the local minimization scheme introduced in [EM06], but relies on local stationarity of the underlying minimization problem. Under the assumption of Mosco-convergence for the dissipation functional, we show that accumulation points exist and are so-called parametrized solutions of the rate-independent system. In particular, this guarantees the existence of parametrized solutions for a rather general setting. Afterwards, we apply the scheme to a model for the evolution of damage. | en |
dc.identifier.issn | 2190-1767 | |
dc.identifier.uri | http://hdl.handle.net/2003/40190 | |
dc.identifier.uri | http://dx.doi.org/10.17877/DE290R-22062 | |
dc.language.iso | en | |
dc.relation.ispartofseries | Ergebnisberichte des Instituts für Angewandte Mathematik;642 | |
dc.subject | rate independent evolutions | en |
dc.subject | damage | en |
dc.subject | semi-smooth Newton methods | en |
dc.subject | finite elements | en |
dc.subject | existence | en |
dc.subject | unbounded dissipation | en |
dc.subject | parametrized solutions | en |
dc.subject.ddc | 610 | |
dc.title | Convergence Analysis of a Local Stationarity Scheme for Rate-Independent Systems and Application to Damage | en |
dc.type | Text | |
dc.type.publicationtype | preprint | |
dcterms.accessRights | open access | |
eldorado.secondarypublication | false |