Convergence Analysis of a Local Stationarity Scheme for Rate-Independent Systems and Application to Damage

dc.contributor.authorSievers, Michael
dc.date.accessioned2021-05-21T15:24:05Z
dc.date.available2021-05-21T15:24:05Z
dc.date.issued2021-04
dc.description.abstractThis paper is concerned with an approximation scheme for rate-independent systems governed by a non-smooth dissipation and a possibly non-convex energy functional. The scheme is based on the local minimization scheme introduced in [EM06], but relies on local stationarity of the underlying minimization problem. Under the assumption of Mosco-convergence for the dissipation functional, we show that accumulation points exist and are so-called parametrized solutions of the rate-independent system. In particular, this guarantees the existence of parametrized solutions for a rather general setting. Afterwards, we apply the scheme to a model for the evolution of damage.en
dc.identifier.issn2190-1767
dc.identifier.urihttp://hdl.handle.net/2003/40190
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-22062
dc.language.isoen
dc.relation.ispartofseriesErgebnisberichte des Instituts für Angewandte Mathematik;642
dc.subjectrate independent evolutionsen
dc.subjectdamageen
dc.subjectsemi-smooth Newton methodsen
dc.subjectfinite elementsen
dc.subjectexistenceen
dc.subjectunbounded dissipationen
dc.subjectparametrized solutionsen
dc.subject.ddc610
dc.titleConvergence Analysis of a Local Stationarity Scheme for Rate-Independent Systems and Application to Damageen
dc.typeText
dc.type.publicationtypepreprint
dcterms.accessRightsopen access
eldorado.secondarypublicationfalse

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ergebnisbericht Nr. 642.pdf
Size:
3.67 MB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.85 KB
Format:
Item-specific license agreed upon to submission
Description: