Matrix measures and random walks

dc.contributor.authorDette, Holger
dc.contributor.authorReuther, Bettina
dc.contributor.authorStudden, W. J.
dc.contributor.authorZygmunt, M.
dc.date.accessioned2005-10-12T06:59:06Z
dc.date.available2005-10-12T06:59:06Z
dc.date.issued2005-10-12T06:59:06Z
dc.description.abstractIn this paper we study the connection between matrix measures and random walks with a tridiagonal block transition matrix. We derive sufficient conditions such that the blocks of the n-step transition matrix of the Markov chain can be represented as integrals with respect to a matrix valued spectral measure. Several stochastic properties of the processes are characterized by means of this matrix measure. In many cases this measure is supported in the interval [−1, 1]. The results are illustrated by several examples including random walks on a grid and the embedded chain of a queuing system.en
dc.format.extent395871 bytes
dc.format.extent586752 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.identifier.urihttp://hdl.handle.net/2003/21653
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-1039
dc.language.isoen
dc.subjectblock tridiagonal transition matrixen
dc.subjectcanonical momentsen
dc.subjectChebyshev matrix polynomialsen
dc.subjectMarkov chainen
dc.subjectmatrix measureen
dc.subjectquasi birth and death processesen
dc.subjectspectral measureen
dc.subject.ddc004
dc.titleMatrix measures and random walksen
dc.typeText
dc.type.publicationtypereporten
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
tr25-05.ps
Size:
386.59 KB
Format:
Postscript Files
Loading...
Thumbnail Image
Name:
tr25-05.pdf
Size:
572.49 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.91 KB
Format:
Item-specific license agreed upon to submission
Description: