Numerische Auswertung von Funktionalintegralen über kohärente Zustände

Loading...
Thumbnail Image

Date

1999-08-17

Journal Title

Journal ISSN

Volume Title

Publisher

Universität Dortmund

Abstract

In der Arbeit wird ein neues numerisches Verfahren zur Lösung der Schrödinger - Gleichung vorgestellt. Für einen gegebenen Anfangszustand soll die zeitliche Entwicklung unter einem Hamilton - Operator mittels eines deterministischen Verfahrens berechnet werden. Hierfür wird eine Funktionalintegraldarstellung über kohärente Zustände benutzt. Die Funktionalintegralformulierung bedient sich einer verallgemeinerten Trotter - Formel und der Aufspaltung des Hamilton - Operators in einen harmonischen und einen anharmonischen Anteil. Die Umsetzung in ein numerisches Verfahren erfolgt über ein Vektor - Matrix - Multiplikations - Schema. Anhand von eindimensionalen Systemen (Morse - Potential, Doppelmuldenpotential) wird demonstriert, dass das Verfahren sowohl für zeitunabhängige als auch für zeitabhängige Hamilton - Operatoren in der Lage ist, über lange Zeiten stabile Ergebnisse zu liefern. Insbesondere konnte das von Großmann et al. (Phys. Rev. Lett., 67:516-519, 1991) an der periodisch getriebenen Doppelmulde entdeckte Phänomen des unterdrückten Tunnelns reproduziert werden. Dieses Problem beinhaltet drei verschiedene Zeitskalen, deren größte die kleinste um fünf Größenordnungen übertrifft.

Description

Table of contents

Keywords

Citation