Numerische Auswertung von Funktionalintegralen über kohärente Zustände
Loading...
Date
1999-08-17
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Universität Dortmund
Abstract
In der Arbeit wird ein neues numerisches Verfahren zur Lösung der Schrödinger - Gleichung vorgestellt. Für einen gegebenen Anfangszustand soll die zeitliche Entwicklung unter einem Hamilton - Operator mittels eines deterministischen Verfahrens berechnet werden. Hierfür wird eine Funktionalintegraldarstellung über kohärente Zustände benutzt. Die Funktionalintegralformulierung bedient sich einer verallgemeinerten Trotter - Formel und der Aufspaltung des Hamilton - Operators in einen harmonischen und einen anharmonischen Anteil. Die Umsetzung in ein numerisches Verfahren erfolgt über ein Vektor - Matrix - Multiplikations - Schema. Anhand von eindimensionalen Systemen (Morse - Potential, Doppelmuldenpotential) wird demonstriert, dass das Verfahren sowohl für zeitunabhängige als auch für zeitabhängige Hamilton - Operatoren in der Lage ist, über lange Zeiten stabile Ergebnisse zu liefern. Insbesondere konnte das von Großmann et al. (Phys. Rev. Lett., 67:516-519, 1991) an der periodisch getriebenen Doppelmulde entdeckte Phänomen des unterdrückten Tunnelns reproduziert werden. Dieses Problem beinhaltet drei verschiedene Zeitskalen, deren größte die kleinste um fünf Größenordnungen übertrifft.