On the Prospects of Using Machine Learning for the Numerical Simulation of PDEs: Training Neural Networks to Assemble Approximate Inverses

dc.contributor.authorRuelmann, Hannes
dc.contributor.authorGeveler, Markus
dc.contributor.authorTurek, Stefan
dc.date.accessioned2018-02-27T10:09:26Z
dc.date.available2018-02-27T10:09:26Z
dc.date.issued2018-02
dc.description.abstractIn an unconventional approach to combining the very successful Finite Element Methods (FEM) for PDE-based simulation with techniques evolved from the domain of Machine Learning (ML) we employ approximate inverses of the system matrices generated by neural networks in the linear solver. We demonstrate the success of this solver technique on the basis of the Poisson equation which can be seen as a fundamental PDE for many practically relevant simulations [Turek 1999]. We use a basic Richardson iteration applying the approximate inverses generated by fully connected feedforward multilayer perceptrons as preconditioners.en
dc.identifier.issn2190-1767
dc.identifier.urihttp://hdl.handle.net/2003/36777
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-18778
dc.language.isoen
dc.relation.ispartofseriesErgebnisberichte des Instituts für Angewandte Mathematik;581
dc.subjectmachine learningen
dc.subjectFEMen
dc.subjectpreconditioningen
dc.subjectSPAIen
dc.subject.ddc610
dc.subject.rswkFinite-Elemente-Methodede
dc.subject.rswkMaschinelles Lernende
dc.subject.rswkSchwach besetzte Matrixde
dc.subject.rswkIterationde
dc.titleOn the Prospects of Using Machine Learning for the Numerical Simulation of PDEs: Training Neural Networks to Assemble Approximate Inversesen
dc.typeText
dc.type.publicationtypepreprint
dcterms.accessRightsopen access
eldorado.secondarypublicationfalse

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ergebnisbericht Nr. 581.pdf
Size:
260.16 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.85 KB
Format:
Item-specific license agreed upon to submission
Description: