Die Fransenmethode zur Bestimmung von Flächen

Loading...
Thumbnail Image

Date

2023

Journal Title

Journal ISSN

Volume Title

Publisher

Gesellschaft für Didaktik der Mathematik

Alternative Title(s)

Abstract

Die Fransenmethode kann uns helfen, die Fläche unter einem Funktionsgraphen zu finden. In Abbildung 1 sehen wir ein Beispiel, nämlich den Graphen der Funktion 𝑓(𝑥) = 1 − 𝑥2 über dem Interwall [𝑎, 𝑏] = [0,1]. Wir teilen das Interwall in Teilinterwalle mit den Endpunkten a=0,Δ,2Δ,…,nΔ=b auf und konstruieren die zugehörigen Riemann-Rechtecke. Diese werden nun durch Dreiecke mit derselben Grundlinie ersetzt, wobei die Höhe eines solchen Dreiecks doppelt so groß ist wie die „Höhe“ des entsprechenden Rechtecks. Die Ecke mit dem spitzen Winkel zeigt nach unten. Damit sind die Flächeninhalte von Dreieck und Rechteck jeweils gleich groß. Die „linke“ Seite der Dreiecke wählen wir senkrecht. Die Gesamtheit dieser „Fransendreiecke“ hat dann den gleichen Flächeninhalt wie die Gesamtheit der Riemann-Rechtecke unter dem Graphen der Funktion. Nun schieben wir die spitzen Ecken der Dreiecke horizontal nach links, bis sie die Seite des vorangehenden Dreiecks treffen. Diese Bewegung ändert den Flächeninnhalt nicht. Auf diese Art erhalten wir eine neue “zusammenhängende” Figur mit dem gleichen Flächeninnhalt wie die Riemann-Rechtecke.

Description

Table of contents

Keywords

Riemann-Integral, Analysis, Problemlösen, Schnittstelle Sek 2 und Hochschule

Subjects based on RSWK

Citation

Collections