Machine learning applied to radar data: classification and semantic instance segmentation of moving road users

dc.contributor.advisorWöhler, Christian
dc.contributor.authorSchumann, Ole
dc.contributor.refereeDietmayer, Klaus
dc.date.accepted2021-03-16
dc.date.accessioned2021-04-21T07:54:49Z
dc.date.available2021-04-21T07:54:49Z
dc.date.issued2021
dc.description.abstractClassification and semantic instance segmentation applications are rarely considered for automotive radar sensors. In current implementations, objects have to be tracked over time before some semantic information can be extracted. In this thesis, data from a network of 77 GHz automotive radar sensors is used to construct, train and evaluate machine learning algorithms for the classification of moving road users. The classification step is deliberately performed early in the process chain so that a subsequent tracking algorithm can benefit from this extra information. For this purpose, a large data set with real-world scenarios from about 5 h of driving was recorded and annotated. Given that the point clouds measured by the radar sensors are both sparse and noisy, the proposed methods have to be sensitive to those features that discern the individual classes from each other and at the same time, they have to be robust to outliers and measurement errors. Two groups of applications are considered: classi- fication of clustered data and semantic (instance) segmentation of whole scenes. In the first category, specifically designed density-based clustering algorithms are used to group individual measurements to objects. These objects are then used either as input to a manual feature extraction step or as input to a neural network, which operates directly on the bare input points. Different classifiers are trained and evaluated on these input data. For the algorithms of the second category, the measurements of a whole scene are used as input, so that the clustering step becomes obsolete. A newly designed recurrent neural network for instance segmentation of point clouds is utilized. This approach outperforms all of the other proposed methods and exceeds the baseline score by about ten percentage points. In additional experiments, the performance of human test candidates on the same task is analyzed. This study shows that temporal correlations in the data are of great use for the test candidates, who are nevertheless outrun by the recurrent network.en
dc.identifier.urihttp://hdl.handle.net/2003/40162
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-22034
dc.language.isoende
dc.subjectRadaren
dc.subjectMachine learningen
dc.subjectClassificationen
dc.subjectAutomotiveen
dc.subject.ddc620
dc.subject.rswkRadarde
dc.subject.rswkAutomobilde
dc.titleMachine learning applied to radar data: classification and semantic instance segmentation of moving road usersen
dc.typeTextde
dc.type.publicationtypedoctoralThesisde
dcterms.accessRightsopen access
eldorado.secondarypublicationfalsede

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
thesis.pdf
Size:
18.29 MB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.85 KB
Format:
Item-specific license agreed upon to submission
Description: