Boosting classifiers for drifting concepts

Loading...
Thumbnail Image

Date

2006-03-16T13:29:57Z

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

This paper proposes a boosting-like method to train a classifier ensemble from data streams. It naturally adapts to concept drift and allows to quantify the drift in terms of its base learners. The algorithm is empirically shown to outperform learning algorithms that ignore concept drift. It performs no worse than advanced adaptive time window and example selection strategies that store all the data and are thus not suited for mining massive streams.

Description

Table of contents

Keywords

Base learners, Boosting-like method, Classifier ensemble, Data stream, Drift, Mining massive streams

Citation