Boosting classifiers for drifting concepts

dc.contributor.authorKlinkenberg, Ralf
dc.contributor.authorScholz, Martin
dc.date.accessioned2006-03-16T13:29:57Z
dc.date.available2006-03-16T13:29:57Z
dc.date.issued2006-03-16T13:29:57Z
dc.description.abstractThis paper proposes a boosting-like method to train a classifier ensemble from data streams. It naturally adapts to concept drift and allows to quantify the drift in terms of its base learners. The algorithm is empirically shown to outperform learning algorithms that ignore concept drift. It performs no worse than advanced adaptive time window and example selection strategies that store all the data and are thus not suited for mining massive streams.en
dc.format.extent335392 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/2003/22236
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-14320
dc.language.isoen
dc.subjectBase learnersen
dc.subjectBoosting-like methoden
dc.subjectClassifier ensembleen
dc.subjectData streamen
dc.subjectDriften
dc.subjectMining massive streamsen
dc.subject.ddc004
dc.titleBoosting classifiers for drifting conceptsen
dc.typeTextde
dc.type.publicationtypereporten
dcterms.accessRightsopen access
eldorado.dnb.deposittrue

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
tr06-06.pdf
Size:
327.53 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.92 KB
Format:
Item-specific license agreed upon to submission
Description: