Maxwell’s equations with mixed impedance boundary conditions
| dc.contributor.author | Schweizer, Ben | |
| dc.contributor.author | Wiedemann, David | |
| dc.date.accessioned | 2025-10-22T06:59:06Z | |
| dc.date.available | 2025-10-22T06:59:06Z | |
| dc.date.issued | 2025-10-16 | |
| dc.description.abstract | We study the time-harmonic Maxwell equations on bounded Lipschitz domains with an impedance boundary condition. The impedance coefficient can be matrix valued such that, in particular, a polarization dependent impedance is modeled. We derive a Fredholm alternative for this system. As a consequence, we obtain the existence of weak solutions for arbitrary sources when the frequency is not a resonance frequency. Our analysis covers the case of singular impedance coefficients | en |
| dc.identifier.uri | http://hdl.handle.net/2003/44042 | |
| dc.identifier.uri | http://dx.doi.org/10.17877/DE290R-25810 | |
| dc.language.iso | en | |
| dc.subject | Maxwell’s equations | en |
| dc.subject | Impedance boundary condition | en |
| dc.subject | Polarization | en |
| dc.subject.ddc | 610 | |
| dc.title | Maxwell’s equations with mixed impedance boundary conditions | en |
| dc.type | Text | de |
| dc.type.publicationtype | preprint | en |
| dcterms.accessRights | open access | |
| eldorado.dnb.deposit | true | |
| eldorado.secondarypublication | false |
