Non-uniformly parabolic equations and applications to the random conductance model
dc.contributor.author | Bella, Peter | |
dc.contributor.author | Schäffner, Mathias | |
dc.date.accessioned | 2022-04-13T14:06:47Z | |
dc.date.available | 2022-04-13T14:06:47Z | |
dc.date.issued | 2021-07-30 | |
dc.description.abstract | We study local regularity properties of linear, non-uniformly parabolic finite-difference operators in divergence form related to the random conductance model on Zd. In particular, we provide an oscillation decay assuming only certain summability properties of the conductances and their inverse, thus improving recent results in that direction. As an application, we provide a local limit theorem for the random walk in a random degenerate and unbounded environment. | en |
dc.identifier.uri | http://hdl.handle.net/2003/40853 | |
dc.identifier.uri | http://dx.doi.org/10.17877/DE290R-22710 | |
dc.language.iso | en | de |
dc.relation.ispartofseries | Probability Theory and Related Fields;Bd. 182. 2022, H. 1-2 pp 353–397 | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject | Processes in random environments | en |
dc.subject | Functional limit theorems | en |
dc.subject | Smoothness and regularity of solutions to PDEs | en |
dc.subject | Degenerate parabolic equations | en |
dc.subject.ddc | 510 | |
dc.title | Non-uniformly parabolic equations and applications to the random conductance model | en |
dc.type | Text | de |
dc.type.publicationtype | article | de |
dcterms.accessRights | open access | |
eldorado.secondarypublication | true | de |
eldorado.secondarypublication.primarycitation | Probability theory and related fields. Vol. 182. 2022, Issue 1/2, pp 353–397 | en |
eldorado.secondarypublication.primaryidentifier | https://doi.org/10.1007/s00440-021-01081-1 | de |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Bella-Schäffner2022_Article_Non-uniformlyParabolicEquation.pdf
- Size:
- 693.78 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 4.85 KB
- Format:
- Item-specific license agreed upon to submission
- Description: