Convergence of adaptive discontinuous galerkin methods

dc.contributor.authorKreuzer, Christian
dc.contributor.authorGeorgoulis, Emmanuil H.
dc.date.accessioned2017-08-04T12:00:41Z
dc.date.available2017-08-04T12:00:41Z
dc.date.issued2017-08
dc.description.abstractWe develop a general convergence theory for adaptive discontinu- ous Galerkin methods for elliptic PDEs covering the popular SIPG, NIPG and LDG schemes as well as all practically relevant marking strategies. Another key feature of the presented result is, that it holds for penalty parameters only necessary for the standard analysis of the respective scheme. The analysis is based on a quasi interpolation into a newly developed limit space of the adaptively created non-conforming discrete spaces, which enables to generalise the basic convergence result for conforming adaptive finite element methods by Morin, Siebert, and Veeser [A basic convergence result for conforming adaptive finite elements, Math. Models Methods Appl. Sci., 2008, 18(5), 707–737].en
dc.identifier.issn2190-1767
dc.identifier.urihttp://hdl.handle.net/2003/36041
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-18058
dc.language.isoen
dc.relation.ispartofseriesErgebnisberichte des Instituts für Angewandte Mathematik;575
dc.subject.ddc610
dc.titleConvergence of adaptive discontinuous galerkin methodsen
dc.typeText
dc.type.publicationtypepreprint
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ergebnisbericht Nr. 575.pdf
Size:
546.86 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.85 KB
Format:
Item-specific license agreed upon to submission
Description: