On a minimax principle in spectral gaps
dc.contributor.author | Seelmann, Albrecht | |
dc.date.accessioned | 2023-04-25T14:13:25Z | |
dc.date.available | 2023-04-25T14:13:25Z | |
dc.date.issued | 2022-03-03 | |
dc.description.abstract | The minimax principle for eigenvalues in gaps of the essential spectrum in the form presented by Griesemer et al. (Doc Math 4:275–283, 1999) is adapted to cover certain abstract perturbative settings with bounded or unbounded perturbations, in particular ones that are off-diagonal with respect to the spectral gap under consideration. This in part builds upon and extends the considerations in the author’s appendix to Nakić et al. (J Spectr Theory 10:843–885, 2020). Several monotonicity and continuity properties of eigenvalues in gaps of the essential spectrum are deduced, and the Stokes operator is revisited as an example. | en |
dc.identifier.uri | http://hdl.handle.net/2003/41351 | |
dc.identifier.uri | http://dx.doi.org/10.17877/DE290R-23194 | |
dc.language.iso | en | de |
dc.relation.ispartofseries | Complex analysis and operator theory;16(3) | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject | Minimax values | en |
dc.subject | Eigenvalues in gap of the essential spectrum | en |
dc.subject | Block diagonalization | en |
dc.subject | Stokes operator | en |
dc.subject.ddc | 510 | |
dc.title | On a minimax principle in spectral gaps | en |
dc.type | Text | de |
dc.type.publicationtype | article | de |
dcterms.accessRights | open access | |
eldorado.secondarypublication | true | de |
eldorado.secondarypublication.primarycitation | Seelmann, A. On a Minimax Principle in Spectral Gaps. Complex Anal. Oper. Theory 16, 29 (2022). https://doi.org/10.1007/s11785-022-01209-8 | de |
eldorado.secondarypublication.primaryidentifier | https://doi.org/10.1007/s11785-022-01209-8 | de |