On a minimax principle in spectral gaps

dc.contributor.authorSeelmann, Albrecht
dc.date.accessioned2023-04-25T14:13:25Z
dc.date.available2023-04-25T14:13:25Z
dc.date.issued2022-03-03
dc.description.abstractThe minimax principle for eigenvalues in gaps of the essential spectrum in the form presented by Griesemer et al. (Doc Math 4:275–283, 1999) is adapted to cover certain abstract perturbative settings with bounded or unbounded perturbations, in particular ones that are off-diagonal with respect to the spectral gap under consideration. This in part builds upon and extends the considerations in the author’s appendix to Nakić et al. (J Spectr Theory 10:843–885, 2020). Several monotonicity and continuity properties of eigenvalues in gaps of the essential spectrum are deduced, and the Stokes operator is revisited as an example.en
dc.identifier.urihttp://hdl.handle.net/2003/41351
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-23194
dc.language.isoende
dc.relation.ispartofseriesComplex analysis and operator theory;16(3)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectMinimax valuesen
dc.subjectEigenvalues in gap of the essential spectrumen
dc.subjectBlock diagonalizationen
dc.subjectStokes operatoren
dc.subject.ddc510
dc.titleOn a minimax principle in spectral gapsen
dc.typeTextde
dc.type.publicationtypearticlede
dcterms.accessRightsopen access
eldorado.secondarypublicationtruede
eldorado.secondarypublication.primarycitationSeelmann, A. On a Minimax Principle in Spectral Gaps. Complex Anal. Oper. Theory 16, 29 (2022). https://doi.org/10.1007/s11785-022-01209-8de
eldorado.secondarypublication.primaryidentifierhttps://doi.org/10.1007/s11785-022-01209-8de

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s11785-022-01209-8.pdf
Size:
615.78 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.85 KB
Format:
Item-specific license agreed upon to submission
Description: