High-current Capability of Coaxial Cables in Magnetoforming Applications

Loading...
Thumbnail Image

Date

2008

Journal Title

Journal ISSN

Volume Title

Publisher

Institut für Umformtechnik - Technische Universität Dortmund

Alternative Title(s)

Abstract

Magnetoforming technology often requires impulse current amplitudes of several hundred kiloamps, at pulse durations between 30 µs and > 100 µs. Often, it is required to provide the impulse via a flexible transmission line (cable) in order to allow the forming coil to be positioned correctly. These cables have to withstand the high pulse currents without deterioration for a large number of pulses. In addition, it is necessary to minimise the inductance of the cable connection, as an increase in inductance negatively influences the efficiency of the installation as a whole, whence low-inductance coaxial cables are required which are able to fulfil all of these requirements simultaneously. Manufacturers normally do not specify the impulse current capability of coaxial cables, as this is not necessary for most standard applications. Therefore, experiments were performed to explore the limits of commercial medium high voltage cables in regard of their impulse current withstand capability for these specific impulse parameters. A coaxial medium voltage cable has been tested at single pulses of ca. 100 µs duration, at amplitudes between 30 and 140 kA. The radial deformation (expansion) of the cable was detected with a high-resolution, high-speed camera. At a frame rate of 9000 frames/s the expansion of the cable has been determined as a function of the current amplitude. We observed dynamic changes of the cable diameter at currents above 81 kA, reaching up to 1.26 mm increase in diameter at 142 kA pulse amplitude. Above 100 kA, part of the deformation becomes irreversible, with cumulated permanent changes of up to 1 mm. The measurements are used to estimate the operating range of these cables.

Description

Table of contents

Keywords

coaxial cable, impulse current, magnetic forming, operating range

Subjects based on RSWK

Citation

Collections