Authors: Böhmer, Roland
Diezemann, G.
Geil, B.
Title: Correlation of primary relaxations and high-frequency modes in supercooled liquids
Language (ISO): en
Abstract: The question regarding a possible correlation of the time scales of primary and secondary relaxations in supercooled liquids is formulated quantitatively. It is shown how this question can be answered using spin-lattice relaxation weighted stimulated-echo experiments, which are presented in an accompanying paper [A. Nowaczyk, B. Geil, G. Hinze, and R. Böhmer, Phys. Rev. E 74, 041505 (2006)]. General theoretical expressions relevant for the description of such experiments in the presence of correlation effects are derived. These expressions are analyzed by Monte Carlo integration for various correlation scenarios also including exchange processes, which are the hallmark of dynamical heterogeneity. The results of these numerical simulations provide clear signatures that allow one to distinguish uncorrelated from differently correlated cases. Since modified spin-lattice relaxation effects occur in the presence of nonexponential magnetization recovery, it is shown how to correct for them to a good approximation.
URI: http://hdl.handle.net/2003/25510
http://dx.doi.org/10.17877/DE290R-8076
Issue Date: 2006
Provenance: The American Physical Society
URL: http://dx.doi.org/10.1103/PhysRevE.74.041504
Citation: Diezemann, G..; Geil, B.; Böhmer, R.: Correlation of primary relaxations and high-frequency modes in supercooled liquids : I. Theoretical background of a nuclear magnetic resonance experiment. In: Physical Review E Jg. 74(2006), 041504/1-11, doi: 10.1103/PhysRevE.74.041505.
Appears in Collections:Böhmer, Roland Prof. Dr.

Files in This Item:
There are no files associated with this item.


This item is protected by original copyright



This item is protected by original copyright rightsstatements.org