Autor(en): Oeing, Jonas
Henke, Fabian
Kockmann, Norbert
Titel: Machine learning based suggestions of separation units for process synthesis in process simulation
Sprache (ISO): en
Zusammenfassung: As part of Industry 4.0, workflows in the process industry are becoming increasingly digitalized. In this context, artificial intelligence (AI) methods are also finding their way into the process development. In this communication, machine learning (ML) algorithms are used to suggest suitable separation units based on simulated process streams. Simulations that have been performed earlier are used as training data and the information is learned by machine learning models implemented in Python. The trained models show good, reliable results and are connected to a process simulator using a .NET framework. For further optimization, a concept for the implementation of user feedback will be assigned. The results will provide the fundamental basis for future AI-based recommendation systems.
Schlagwörter: Machine learning
Process engineering
Process simulation
Process synthesis
Separation units
URI: http://hdl.handle.net/2003/40799
http://dx.doi.org/10.17877/DE290R-22656
Erscheinungsdatum: 2021-09-15
Rechte (Link): https://creativecommons.org/licenses/by/4.0/
Enthalten in den Sammlungen:Arbeitsgruppe Apparatedesign



Diese Ressource ist urheberrechtlich geschützt.



Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons