Arithmetische Fuchssche Gruppen der Signatur (2;-)
Loading...
Date
2005-07-05T12:14:17Z
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Arithmetische Fuchssche Gruppen sind Fuchssche Gruppen, die man durch eine gewisse Konstruktion über Quaternionenalgebren über total reellen Zahlkörpern erhält. Wir bestimmen zunächst Schranken an den Körpergrad und die Diskrimante des Zahlkörpers, über den die assoziierte Quaternionenalgebra einer arithmetischen Fuchsschen Gruppe der Signatur (2;-) definiert sein kann. Besonderes Augenmerk richten wir dabei auf den Fall, dass die arithmetische Fuchssche Gruppe von der Quaternionenalgebra abgeleitet ist. Sodann parametrisieren wir die PGL(2,R)-Konjugationsklassen Fuchsscher Gruppen der Signatur (2;-) mit Hilfe der Spuren einiger Gruppenelemente, um Takeuchis Charakterisierung arithmetischer Fuchsscher Gruppen über die Spuren zu benutzen. Diese Charakterisierung führt auf eine Beschreibung der fraglichen arithmetischen Fuchsschen Gruppen durch eine endliche Menge von Zahlentupeln. Allerdings ist nicht klar, wie man diese endliche Menge von Zahlentupeln auflistet. Zum Schluss wird an einigen Beispielen gezeigt, wie man die Beschreibung der PGL(2,R)-Konjugationsklassen durch Spuren benutzen kann, um diejenigen arithmetischen Fuchsschen Gruppen der Signatur (2;-) zu bestimmen, die Untergruppen bereits bekannter arithmetischer Fuchsscher Gruppen sind.
Description
Table of contents
Keywords
Fuchssche Gruppen, arithmetische Fuchssche Gruppen, Flächengruppen, Teichmüllerraum, Fuchsian groups, arithmetic Fuchsian groups, surface groups, Teichmüller space