Fakultät Maschinenbau

Permanent URI for this collection

Browse

Recent Submissions

Now showing 1 - 2 of 2
  • Item
    Demystifying reinforcement learning approaches for production scheduling
    (2023) Rinciog, Alexandru; Meyer, Anne; Liebig, Thomas
    Recent years has seen a sharp rise in interest pertaining to Reinforcement Learning (RL) approaches for production scheduling. This is because RL is seen as a an advantageous compromise between the two most typical scheduling solution approaches, namely priority rules and exact approaches. However, there are many variations of both production scheduling problems and RL solutions. Additionally, the RL production scheduling literature is characterized by a lack of standardization, which leads to the field being shrouded in mysticism. The burden of showcasing the exact situations where RL outshines other approaches still lies with the research community. To pave the way towards this goal, we make the following four contributions to the scientific community, aiding in the process of RL demystification. First, we develop a standardization framework for RL scheduling approaches using a comprehensive literature review as a conduit. Secondly, we design and implement FabricatioRL, an open-source benchmarking simulation framework for production scheduling covering a vast array of scheduling problems and ensuring experiment reproducibility. Thirdly, we create a set of baseline scheduling algorithms sharing some of the RL advantages. The set of RL-competitive algorithms consists of a Constraint Programming (CP) meta-heuristic developed by us, CP3, and two simulation-based approaches namely a novel approach we call Simulation Search and Monte Carlo Tree Search. Fourth and finally, we use FabricatioRL to build two benchmarking instances for two popular stochastic production scheduling problems, and run fully reproducible experiments on them, pitting Double Deep Q Networks (DDQN) and AlphaGo Zero (AZ) against the chosen baselines and priority rules. Our results show that AZ manages to marginally outperform priority rules and DDQN, but fails to outperform our competitive baselines.
  • Item
    A scalable machine learning system for anomaly detection in manufacturing
    (2023) Schlegl, Thomas; Deuse, Jochen; Müller, Rainer
    Berichte über Rückrufaktionen in der Automobilindustrie gehören inzwischen zum medialen Alltag. Tatsächlich hat deren Häufigkeit und die Anzahl der betroffenen Fahrzeuge in den letzten Jahren weiter zugenommen. Die meisten Aktionen sind auf Fehler in der Produktion zurückzuführen. Für die Hersteller stellt neben Verbesserungen im Qualitätsmanagement die intelligente und automatisierte Analyse von Produktionsprozessdaten ein bislang kaum ausgeschöpftes Potential dar. Die technischen Herausforderungen sind jedoch enorm: die Datenmengen sind gewaltig und die für einen Fehler charakteristischen Datenmuster zwangsläufig unbekannt. Der Einsatz maschineller Lernverfahren (ML) ist ein vielversprechender Ansatz um diese Suche nach der sinnbildlichen Nadel im Häuhaufen zu ermöglichen. Algorithmen sollen anhand der Daten selbständig lernen zwischen normalem und auffälligem Prozessverhalten zu unterscheiden um Prozessexperten frühzeitig zu warnen. Industrie und Forschung versuchen bereits seit Jahren solche ML-Systeme im Produktionsumfeld zu etablieren. Die meisten ML-Projekte scheitern jedoch bereits vor der Produktivphase bzw. verschlingen enorme Ressourcen im Betrieb und liefern keinen wirtschaftlichen Mehrwert. Ziel der Arbeit ist die Entwicklung eines technischen Frameworks zur Implementierung eines skalierbares ML-System für die Anomalieerkennung in Prozessdaten. Die Trainingsprozesse zum Initialisieren und Adaptieren der Modelle sollen hochautomatisierbar sein um einen strukturierten Skalierungsprozess zu ermöglichen. Das entwickelt DM/ML-Verfahren ermöglicht den langfristigen Aufwand für den Systembetrieb durch initialen Mehraufwand für den Modelltrainingsprozess zu senken und hat sich in der Praxis als sowohl relativ als auch absolut Skalierbar bewährt. Dadurch kann die Komplexität auf Systemebene auf ein beherrschbares Maß reduziert werden um einen späteren Systembetrieb zu ermöglichen.