Gewichts- und Distanzzähler von Codes und Kugelpackungen
Loading...
Date
2005-05-06
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Universität Dortmund
Abstract
In dieser Arbeit werden Average-Thetareihen zu periodischen Punktmengen und Distanzzähler (nichtlinearer) binärer Codes von höherem Grad definiert. Sie verallgemeinern die bekannten Zähler/Reihen vom Grad 1 bzw. die Gewichtszähler/Thetareihen im linearen Fall. Es werden Eigenschaften (u.a. MacWilliams-Transformierte/Thetatransformationsformel) dieser Zähler/Reihen nachgewiesen. Die Average-Thetareihen zu geeigneten periodischen Punktmengen sind Modulformen; die zugehörige Modulgruppe wird in der Arbeit bestimmt, und es wird gezeigt, dass die wohlbekannteBeziehung zwischen den Gewichtszählern linearer Codes und den Thetareihen der aus den Codes konstuierten Gittern sich auf die Distanzzähler und Average-Thetareihen überträgt. Desweiteren wird eine Klasse von binären Codes bestimmt, deren Grad 2 Distanzzähler invariant unter MacWilliams-Transformation sind. Im letzten Kapitel der Arbeit wird die Anwendung dieser Konzepte auf ein spezielles Packungsproblem im 16-dimensionalen Raum diskutiert, und es werden periodische Punktmengen mit einer bestimmten Abstandsverteilung vom Nullpunkt konstruiert.
Higher degree average theta series of periodic point sets and distance enumerators of (nonlinear) binary codes are defined. They generalize the well-known enumerators/series of degree 1 and the enumerators/series in the linear case respectively. Some important properties (e.g. MacWilliams-transform/theta transformation formula) of these enumerators/series are proven. The average theta series of suitable point sets are modular forms. The corresponding modular group is determined and it is shown, that the well-known connection between weight enumerators of linear codes and the theta series of the lattices constructed via the codes carries over to the distance enumerators and average theta series. Furthermore a class of binary codes is determined for which the degree 2 distance enumerators are invariant under MacWilliams-transformation. In the last chapter the application of the preceding concepts on a certain sphere packing problem in dimension 16 is studied. In addition some point sets with a prescribed distance distribution are constructed.
Higher degree average theta series of periodic point sets and distance enumerators of (nonlinear) binary codes are defined. They generalize the well-known enumerators/series of degree 1 and the enumerators/series in the linear case respectively. Some important properties (e.g. MacWilliams-transform/theta transformation formula) of these enumerators/series are proven. The average theta series of suitable point sets are modular forms. The corresponding modular group is determined and it is shown, that the well-known connection between weight enumerators of linear codes and the theta series of the lattices constructed via the codes carries over to the distance enumerators and average theta series. Furthermore a class of binary codes is determined for which the degree 2 distance enumerators are invariant under MacWilliams-transformation. In the last chapter the application of the preceding concepts on a certain sphere packing problem in dimension 16 is studied. In addition some point sets with a prescribed distance distribution are constructed.
Description
Table of contents
Keywords
weight enumerator, distance enumerator, binary codes, quaternary codes, average theta series, extremal modular form, sphere packing problem, Gewichtszähler, Distanzzähler, Binäre Codes, Quaternäre Codes, Average-Thetareihe, Extremale Modulform, Kugelpackungsproblem