Gewichts- und Distanzzähler von Codes und Kugelpackungen

dc.contributor.advisorScharlau, R.de
dc.contributor.authorBowert, Frankde
dc.contributor.refereeSkoruppa, G.de
dc.date.accepted2005
dc.date.accessioned2005-05-12T10:53:11Z
dc.date.available2005-05-12T10:53:11Z
dc.date.created2005-04-11de
dc.date.issued2005-05-06de
dc.description.abstractIn dieser Arbeit werden Average-Thetareihen zu periodischen Punktmengen und Distanzzähler (nichtlinearer) binärer Codes von höherem Grad definiert. Sie verallgemeinern die bekannten Zähler/Reihen vom Grad 1 bzw. die Gewichtszähler/Thetareihen im linearen Fall. Es werden Eigenschaften (u.a. MacWilliams-Transformierte/Thetatransformationsformel) dieser Zähler/Reihen nachgewiesen. Die Average-Thetareihen zu geeigneten periodischen Punktmengen sind Modulformen; die zugehörige Modulgruppe wird in der Arbeit bestimmt, und es wird gezeigt, dass die wohlbekannteBeziehung zwischen den Gewichtszählern linearer Codes und den Thetareihen der aus den Codes konstuierten Gittern sich auf die Distanzzähler und Average-Thetareihen überträgt. Desweiteren wird eine Klasse von binären Codes bestimmt, deren Grad 2 Distanzzähler invariant unter MacWilliams-Transformation sind. Im letzten Kapitel der Arbeit wird die Anwendung dieser Konzepte auf ein spezielles Packungsproblem im 16-dimensionalen Raum diskutiert, und es werden periodische Punktmengen mit einer bestimmten Abstandsverteilung vom Nullpunkt konstruiert.de
dc.description.abstractHigher degree average theta series of periodic point sets and distance enumerators of (nonlinear) binary codes are defined. They generalize the well-known enumerators/series of degree 1 and the enumerators/series in the linear case respectively. Some important properties (e.g. MacWilliams-transform/theta transformation formula) of these enumerators/series are proven. The average theta series of suitable point sets are modular forms. The corresponding modular group is determined and it is shown, that the well-known connection between weight enumerators of linear codes and the theta series of the lattices constructed via the codes carries over to the distance enumerators and average theta series. Furthermore a class of binary codes is determined for which the degree 2 distance enumerators are invariant under MacWilliams-transformation. In the last chapter the application of the preceding concepts on a certain sphere packing problem in dimension 16 is studied. In addition some point sets with a prescribed distance distribution are constructed.en
dc.format.extent665521 bytes
dc.format.extent1167527 bytes
dc.format.extent7537 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.format.mimetypeapplication/gzip
dc.identifier.urihttp://hdl.handle.net/2003/20389
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-15388
dc.language.isodede
dc.publisherUniversität Dortmundde
dc.subjectweight enumeratoren
dc.subjectdistance enumeratoren
dc.subjectbinary codesen
dc.subjectquaternary codesen
dc.subjectaverage theta seriesen
dc.subjectextremal modular formen
dc.subjectsphere packing problemen
dc.subjectGewichtszählerde
dc.subjectDistanzzählerde
dc.subjectBinäre Codesde
dc.subjectQuaternäre Codesde
dc.subjectAverage-Thetareihede
dc.subjectExtremale Modulformde
dc.subjectKugelpackungsproblemde
dc.subject.ddc510de
dc.titleGewichts- und Distanzzähler von Codes und Kugelpackungende
dc.typeTextde
dc.type.publicationtypedoctoralThesisde
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 5 of 5
Loading...
Thumbnail Image
Name:
Bowert.pdf
Size:
649.92 KB
Format:
Adobe Portable Document Format
Description:
DNB
No Thumbnail Available
Name:
bowert.ps
Size:
1.11 MB
Format:
Postscript Files
No Thumbnail Available
Name:
BowertMaple.tar
Size:
48 KB
Format:
tar-Archivdatei
No Thumbnail Available
Name:
BowertMagma.tar
Size:
58.84 MB
Format:
tar-Archivdatei
No Thumbnail Available
Name:
Maple.tar.gz
Size:
7.36 KB
Format:
GNU Zip-Dateien